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ON A WIDE RANGE EXCLUSION PROCESS IN RANDOM MEDIUM WITH
LOCAL JUMP INTENSITY
by
E. Platent’
Karl-Weierstrass—-Institute of Mathematics
Academy of Sciences of the GDR

Mohrenstr. 39, Berlin, DDR-1086&
and

Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27599-3260

Summary:

The paper investigates +the macroscopic nonequilibrium
dynamics of a wide range exclusion process in random
medium, Eased aon a law of large numbers and the specific
properties of the exclusion dynamics it is shown under
suitable assumptions that the particle concentration

follows a nonlinear evolution equation.

Key words: exclusion process
interacting particle system
noneguilibrium dynamics
nonlinear evolution equation

1> The papor was written during a stay a* the Ccenter of
Stochastic Processes of the University of North
Carolina at Chapel Hill in 1988. and supported by the Air
Force Office of Scientific Research Contract No. F49620 85C 0144.




1. Introduction

The exclusion process was introduced by Spitzer in /10/.
Comprehensive treatments of this interacting particle
system are given in /7/ and /1/.

In the exclusion maodel the particles attempt to mave
independently according to a Markov kernel on a given
countable set of sites. But any jump which would take a
particle to an already occﬁpied site is suppressed. That
means there is always at most one particle per site.

This paper is a continuation of /8/ where we considered
the s0 called wide range birth and death exclusion process
in random medium. We proved in /8/ a law of large numbers
for this measure valued process and derived a
deterministic macroscopic equation describing the
evolution o©of the occupation rate of the sites. This
macroscopic equation holds under rather general
conditions. It can be specified by the choice of the
Markov kernel, this means by the given jump intensity of
the particles.

Within this paper we will study the case of a nonsymmetric
local jump intensity which allows only Jjumps into the
neighbortood. For instance, such jump intensity is of
interest in modelling of stochastic charge transgort (see
19/ .

In the following we will show under suitable assumptions

that the asymptotics with respect to vanishing mean jump




size vyields a nonlinear second order partial differential
equation characterizing the evolution of the limiting
particle concentration. This equation represents a
continuity equation, where physical quantities as current
density vector, conductivity, static potential and
chemical potential can be easily identified. It seems that
this continuity equation models important transport
processes in physics, chemistry, biology, electronics,

social sciences and other fields.

The first part of the paper generalizes the btirth and
death exclusion process introduced in /78/. It formulates a
law of large numbers for the case that the mean number of
sites per unit volume tends to infinity. The second part
derives the evolution equation for the limiting particle

concentration.

2. Exclusion process

2.1. Random wmediuas

In the following we will introduce a generalization of the
wide range birth and death exclusion process considered in
/8/.

For unexplained notations and definitions we refer to /4/
or /35/.

Let (J},f,P) denote the basic complete probability space.

F = (§%>o ie an increasing right—-continuous family of




complete sub-g4 -fields of F.

Further, B(E) represents the Borel-¢ —algebra of a
topological space E.

The sites are located in a closed bounded domain bc Bd s
de {1,2,...} .

We introduce a finite & -additive measure A on g(ﬁ) which
is called intensity measure of sites.

(N ),,, denotes a sequence of £, -measurable simple

counting measures on B(@), the so called counting measures

of sites.

The parameter

- -1
(2.1.1)  n=E N_@ ¢ | da

Q

can be interpreted as the mean number of sites per unit

volume.

For K e (0, c0) we denote by *QK the set of bounded

Lipschitz—-continuous functions fla ~> [-K,K Jwith
(2.1.2) FW-f(q| = K|g-u |

for all u,q ¢ En‘, using the usual Euclidean norm. Now we

assume that for each Ke€(0,00) it holds

2
(2.1.3)  lim € sup J £@ & N -A)day
n->e0 § €, Q

]
o]

and for all n>t we have

|

\.J




- 5 —
“ - 4 )
(2.1.4)  E(F N (@) =K < oo

The counting measure Nn represents the random medium
within our microscopic stochastic model, The above
conditions are satisfied for a wide class of regular
lattices and other point processes including the #Poisson

point process (see /8/).

2.2. Markovian jump mechanisa»s

We denote by L"i the counting measure of particles at
time t20,

Further, we introduce an F-adapted cadlag Poisson counting
measure/un on 2([0,” e g(ﬁ) e g(ﬁ) which is characterized
by 1its dual predictable projection which is here its

intensity measure

(2.2.1) Vn(dr,du,dq)=ﬁ1 wt(u,q)Nn(du)Nn(dq)dt.

We assume that the jump rate wt(u,q) is nonnegative and
Lipschitz—continuous with respect to u and q uniformely
with respect to t.

The counting measure A generates the so called possible
jumps of particles. But only jumps from occupied into
vacant sites will take place. Therefore, we will have at

most one particle at each site.

2.3. Birth and death of particles

We 1include in our microscopic stochastic model also the

1@




effects of birth and death of particles.

The possible birth or death, resp., of particles is
generated by the F-adapted cadlag Poisson counting
measures/a” and/g" » resp., which are defined on B( [O,°))@
_g(ﬁ) and characterized by their dual predictable

projections

(2.3.1) Y, (dt,du)

]

W, (u) N, (du)dt

and

(2.3.2) jn(dt,du) w_ (u) N (du)dt

t

resp. The birth rate i&(u) and death rate w, (u) are

t
assumed to be nonnegative bounded and Lipschitz—-continuous
with respect to ue [ uniformely with resprect to t.
Furthermore, we suppose that/an,/ananq/ghare independent.
A birth (death, resp.,) at u at time t will take place
only if u is vacant (occupied, resp.) at this time. So

also in the case of a birth or death it is ensured that we

have at most one particle at each site.

2.4. Initial condition
The function ‘fIQ -> [0,1] denotes the initial occupation
rate of the sites. UWe assume that at time t=0 at most one

particle is at each site, Lno is fo -measurable and for

all K g (0,00) it holds

(2.4.1) 1lim E sup (._ff(q)(g L
n—>00 fegk Q

n

2
o ‘f(q)A. ) (dq)) =0.




2.5. Stochastic equation

Let %: denote the Dirac measure at ue @ and L,¢. the left

hand limit of the measure of particles at time t>0.
Now we can define the measure valued exclusion process

L, = {Ln,t}t;o as unique solution of the following
stochastic equation (see /8/)

(2.5.1) L = L +

g oL, o (upa-L, o ({q}))/a”(ds,du,dq)

+

J"u—t. - ([q}))/an(ds,dq)

0\4 S+ °R“.

/
2
~J [t ({u]) 4, (dsydw),
a“

which describes the evolution of L, driven by//% v}a
and‘/gn . One easily notes how the F-adapted cadlag-
piecewise constant and Markovian measure valued process L,
remains at any time t with at most one particle at each
site. Furthermore, the .interaction between the particles
caused by the exclusion mechanism is reflected by the
logistic nonlinearity Ln(l—Ln) within the second term of
the right hand side of equation (2.5.1).

2.6. Occupation rate

Let '6 denote the support of the intensity measure of
sites/&_Now, for t20 and qe'a we introduce the so called
occupation rate H(t,q) which we will later interpret as
the probability that a site at qea is occupied at time t.

We define the nccupation rate H as the unique solution




{(see /8/) of the following integro-differential equation

(2.56.1) 3% H(t,q)=¢1~-H(t,q) (th(u,q)H(t,u) A (du) +@_ (q))
&

- H(t,q) (/ w, (g u) (1=H(t,u)) /A (du) +u, (@)
0
for all t>0, Qe¢@, with initial condition:
(2.6.2) HO0,q)= Y (q),

forall qe@. It can be shcwn as in /8/ that we have for all

t20 and qeai
(2.6.3) H(t,q) ¢[0,1] .

Equation (2.4.1) is a bilance equation for the macroscopic
evolution of the occupation rate and allows the following
interpretation: The occupation rate changes ite value in
dependence on the occupation rate at other points. It
increases at qe a proportional to the non-occupation rate
(1-H{(t,q)) and the sum pf the birth rate ﬁ;(q) together
with the occupation rates H(t,u) for the sites at ued@\ { q}
which are weighted by the intensity w*(u,q) for jumps from
these sites into q. On the other hand H(t,q) decreases
proportional to its own actual value and the sum of the
death rate gi(q) together with the non-occupation rates
(1-H(t,u) of the ather sites at ue G\ {q} which are
weighted by the intensity wi(q,u) for the jumps from q

into these sites.

Sl

.4
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We remark, that Groeger proved in /3/ that a unique
solution exist for the bilance equation (2.6.1) together
with the Poisson equation describing the self consistent

static potential.

2.7. Law of large numbers

Now, we can formulate a law of large numbers for the above
introduced wide range exclusion process in random medium
for the case that the mean number n of sites per unit

volume tends to infinity, n ->oco .

Theorem 2.7.1

Under the above assumptions it holds for fixed T,K € (O,00)

2
(2.7.2) lim E sup Efsup (/}(q)(iL -H(t,q»4)(dq)) F (=0
= n nt =0 .

n->eo  f¢(,  OSt£T @

The choice of the class of test functions QK and the
positioning of the 2xpectations are cruical for the proof
of the theorem which uses semimartingale methods. It can

be omitted because it would be almost the same as that

which is given in /8/.

The above law of large numbers shows that the random

functional

Le)
ajf(q); L, (da)

converges in the mean square sense uniformely with respect

P




m

_1(')__

to the time te[O,T] and all test functions'fegk for n —->e0

to the deterministic functional

a/f (QHt , A (da).

The inner conditional expectation in (2.7.2) relates to
the driving Poisson counting measures//uh,/zh anq/gu. The
remaining ocuter expectation averages the random medium and

the random initial occupation of the sites.

3. Asyaptotics of the macroscopic nonequilibrium dynamics
3.1. Specifications for the case of a local jump intensity
For simplicity let us cho se the domain

(3.1.1)  @=(0, ] I%...%(0,1,)

with
(3.1.2) li € (0,0)

for all i ¢ {1...,d} .
2@ is the boundary of @ and @ denotes its closure.
Further, 2@ is that part of JQ which does not contain

corners or edges.

For i,j€ {0,1,...} we dencote by Cl the set of all i-times
continuous differentiable functions on @, and Qﬁj is the
set of all functions on [0,7] X8 which are i-times
continuous differentiable with respect to the first and 3-

times with respect to the other coordinates, T € (0, 20 ).




We denote by V, the outward unit normal of J0 at g €7@, by
div a the divergence of a vector a, by a-e the usual
scalar product between two vectors a and e and by grad ¢
“ the gradient of a function f on BJ .

We assume that the intensity measure of sites is

absclutely continuous and we write for all q¢ a
(3.1.3) A (dq) = (q)dq .

We suppose that there exists a version of the

concentration of sites 2 with the properties

(3.1.4) L) 2 K, >0

for all q{ﬁ, where

(3.1.5) 2ec” .

~

Uider this assumption we note that the support QO ofA
coincides with @. To formulate the local jump intensity we

introduce the Lipschitz-continuous probability density

-1
(3.1.6) pl(q)=exp {- q} (/exp{ ~-lul} duw
d
R

for all qfﬁd .

We remark that the proposed approach would also work for
other probability densities if they show moment properties

as those listed in Section 4.1.

®
For each value of a parameter ¢(0,1) we specify the local 1
jump intensity for all t20 and u,qe @ by the expression

@

w




LY
A

a 2 ~(d+2)
(3.1.7)  w (=T, 7it,w P2 (u-@)

with
(3.1.8) T (t,q) = expf{ -@(t,q)} .

where @ (t,q) 1is the sao called static potential and we

assume
(3.1.99 Pec™ .

We note that for smaller « the jump intensity w, is more

localized.

To interpret the jump intensity w, we remark that one can
show by the use af the properties of the probability
density p listed in Section 4.1 that we have for qe¢ @ the
asymptotic drift vector
lim f(u-q)w{.iq,u)du = -b gradp (t,q)
L ~>0 5
and the asymptotic'variation
lim [ tu-q) w, (a,uw)du =bd,
o =20 0
where b is a positive constant depending on d. For
instance we have for d=1 the value b=1/2 and for d=3 the
value b=7T .
Now, the occupation rate depends on the parameter ote (0,1)

and we use in the following also the notation




(3.1.6) H_(t,q)=H(t,q)

for all te [0,T] and q¢ Q.

3.2. An integral quation
In the following we characterize the limiting dynamics of
the occupation rate Hd for £-30. For this purpose we
assume that H, converges pointwise to a function
H [[o,TIx@ -> [0,1 ] such that
(3.2.1) lim (H_ (t,q) -H(t,q))=0

& =>0
for all te¢[0,T] and g¢ Q.
Further, we assume that the time derivative of the
occupation rate is uniformly bounded for all £ €(0,1),

te [0,T]and qe @ with

P
(3.2.2) 157 H,

(t,q) | =K, .
Finally, let us suppose that there exists a constant
(3.2.3) 20€(0,1/2)

such that for all«€(0,1), q¢ @ and +¢[0,T] we have

(3.2.4) H (t,q)¢ [o¢s1~2¢].

That means the occupation rate is never O or 1.




-— 14 —
~2 , 2 .
Let us denote by C  the set of functions f¢ Cwith

(3.2.9) 5%— £(q)=0
¥

fo all qe¢ 2Q°‘.
Now, we are able to characterize H as solution of an

interesting integral equation.

Theorem 3.2.6

The 1limit H of the occupation rate H‘ for«L -0 satisfies
under the above assumptions for all fe G- and te [0,T] the
integral equation

(3.2.7) J’f(q)(ﬁ(t,q)—ﬁ(o,qnl.(q)dq
2

¢
—_— 1
= [/12 Acs,@[div((qrgrad (q)
og -
-3 (q) (1-FA(s,q))grad f(q)grad P (s,q)]

+(q) [ (1-H(s,q¥%, (@ -HAls,@u ()] (q)} dq ds.

The proaf of this theorem is given in Section 4.3.

Equation (3.2,7) gives a characterization of the limit H
which avoids smoothness assumptions on H. Therefore one
can say that (3.2.7) gives a rather weak description of H.
Under sufficient smoothness assumptions we will show
within the next section that H is the solution of a
corresponding nonlinear partial differential equation

which allows a direct interpretation of the dynamics

Az




already described by the equation (3.2.7).

3.3. Asymptotic occupation rate

We assume the initial condition
(3.3.1) A0,.) ¢ C?
with

(3.3.2) 2= Ho,q +F(o,q) (1—’mo,q))-2—@ (0,q) =0.
0»71 v

Now, we are going to introduce a function R on [O,Tf]xﬁ
which we call asymptotic occupation rate. We suppose that
there exists a function Re_g?z which is the unique

solution of the nonlinear partial differential equation

- 2
(3.3.3) 93—R(t,q)= 1"(q)‘i’-div( A (q) (grad R(t,q)

+R(t,q) (1-R(t,q))grad § (t,q)))

+(1-R(t,Q))W , (q)-R(t,qw (@)

for all t>0 and q¢e¢ @ with reflecting boundary condition

(3.3.4) —D—R(t,q)m(t,q)(1—R<t,q))i@(t,q)=o
99; D~)¥

for all t20 and q¢ 9Q’, and initial condition
(3.3.5) R(0,q)=H(0,q)
for all qea.

We note that (3.3.3) represents a generalization of

Burger ‘s equation.




The following theorem shows under sufficient smoothness
assumptions on the limit H of the occupation rate H, for

&L - 0, that H coincides with the asymptotic occupation

If we assume the property

(3.3.7) He g™

then we have for all (t,q)¢ [O,7T ]xQ the egufvalence
(3.3.8) H(t,q)=R(t,q).

The proof of this assertion i given in Section 4.4.

We remark that the smoothness assumption (3.3.7) on H
could be considerably weakened by an appropriate
functional analytic formulation of the nonlinear partial
differential equation (3.3.3)-(3.3.9). For instance such a
weaker formulation could be based on methods described in

/2/ or /6 /. Here we have chosen rather strong smoothness
assumptions on R and H to derive the dynamics described by
the equations (3.3.3) - (3.3.9) without technical
difficulties in the formulation and prove of Theorem
3.3.6. It remains an interesting praoblem to derive these

equations under much weaker assumptions.

Finally, we remark that the result could be generalized




to the case of a nonisotropic praobability density p and a

general regular domain a.

3.4. Continuity equation

For better interpretation of the asymptotic occupation
rate R tagether with other physical quantities as particle
concentration and current density vector we rewrite the
equation (3.3.3) in the form of a continuity equation.

Let us introduce for all t20 and qe¢ G the particle

concentration
{3.4.1) _f(t,q)=R(t,q)2.(q)
and the vector function

(3.4.2) jt,@=-£2(q) (grad R(t,q)

+R(t,q) (1-R(t,q)) grad{ (t,q))
which we will call current density vector.
Then it follows from (3.3.3) the continuity equation

9 .,
(3.4.3)DT9(t,q)= -div(j(t,q))
+( A (q)- @ (t,q) )Wf(q)-f(t.q)gt(q)

for all t>0 and qe @, with reflecting boundary condition

(3.4.4) j(t,q)-\?s =0

for all t20 and q¢?2@’, and initial condition

L@

]
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(3.4.5) 9 (0,q)=H(0,q) A (q)

for all qge 0.

The above continuity equation relates the time

derivative

of the particle concentration with the current density

vector.

We can also write the current density vector in the form

(3.4.6) sit,q)=

b * §
- 2 A(Q)R(t,q) (1-R(t,q))grad (f(t,qn (t,q)),

for all t*0, q¢ Q, where

(3.4.7) f(t,q)=ln(R(t,q)(l—R(t,q))-1)

is the so called chemical potential at t*0 and q¢ Q.

One notes that the current density vector shows into the

opposite direction of the gradient of the

chemical and static potential.

The length of the current density vector is

to the so called conductivity
A 1
(3.4.8) S(t,q)= 7 bA (qQIR(t,q) (1-R(t,q))

at t20 and g€ @, which contains a logistic

with respect tao the asymptotic occupation

sum of the

proportional

nonlinearity

rate R. The

RJ




R 3 hshaa

conductivity reaches its maximum at an asymptotic

occupation rate with value R=1/2 which corresponds to the

value of the chemical potential f =0, The logistic
nonlinearity of the conductivity 1is caused by the
interaction of the particles within the e»xclusion

dynamics, where jumps to occupied sites are excluded. As

important result of this nonlinearity it follows that the

.particle concentration is bounded by the concentration of

sites and we have for all t2*0 and q¢ @
(3.4.9) 0= @(t, @€ A(qQ).

Finally, we note that there is no current through the
boundary 7@° what is natural in our model. It seems that
the continuity equation (3.4.3)-(3.4.5) can be used to
model imporfant transport processes with birth and death
effects in physics, chemistry, biology, social sciences

and other fields.

4. Proofs
4.1 Properties of the probability density
For easier reference we list some properties aof the

probability density

p(q)=e>:p{— 'q‘}( £exp{ - fuj }du)d

introduced in (3.1.4).

p is symmetric and we have for all qe BJ that




(4.1.1) p(q)=p(-q))

For all i,ke¢ {1,...,d} one obtains by the use of the

abbreviation 2 -(of+2)
p=p (c—(-(u—q) ) oL

the following moment properties

(4.1.2) lim ,[(ui—q-)p du=0 for qe¢ @

<-30 @ 1

(4.1.3) lim [ (u.-q.)p du=d; (q) for qe¢dQ,
i ] 1
«~>0 B

b if ge @ and i=k

(4.1.4) lim / (u;-q;) (u,-q,)p du={ o if qe @ and ik

o—>0 0 ? c;, (@ if geda
and .

: 1 =

(4.1.5) lim /[ ju~ql p du= O for all qe¢ @ and 1¢{3,4,...}
ol ~—>» 0 5

where b is a fixed bounded positive constant depending on

the dimension d and it holds for di and cik the estimate

(4.1.8) |y, (@] +|d; @] 2K

for all q€¢7 a.

4.2, Some preparations
For all o« €(0,1), te [ 0,T ] and gq¢ @ we define the

function

-1 -1
(4.2.1) Qd(t,q)=ﬂ£(t,q)(l—ﬁc(t,q)) T (t,q) € [O,OOJ
and it follows with (3.2.4) that

-1 -
(4.2.2) H, (t,q)=A, (t,q)T (t,q) (1+A, (t, T (t,q)) ¢ [e,1-2 ]
ol ol o« .

Now, we get from (4.2.1) with the estimate in (4.2.2) and

the boundedness of 7w because of (3.1.8) and (3.1.9) also




an estimate for Ad with

(4.2.3) A (t,q) € [7q YA ]
and

(4.2.4) 0« 74571 < oo
for all deco,1), te[ 0,T] and g€ @.

With the notation (4.2.1) and the explicit form of the

local Jjump intensity W, in (3.1.7) we can write the

integro-differential equation (2.6.1) in the form

(4.2.3) 5% H_ (t,q)=/(A‘C (t,uw-A . (t,q))Bl(u)du*—Fg

for all «L€(0,1), t€ (0, T] and q¢ T with the abbreviations

1 1
(4,2.8) B=(1—Hd(t,q))(l—ﬁ£(t,u))'V(t,qf Tt W)t p
and

(4.2.7) R =(-H, (£,a)%, (@ -H, (t,qm , (9).

To simplify our notation let us use alsa the following

abbreviations

fg =f(q),23=1(q); A¥=Ad(t,q), H¥=Hoc(t,q), ﬁ(z=_ﬁ(t,q),
™, =Tt,a), @¥=p(t,q).
Further, we suppress the indication that we integrate over

the set Q.

Now, it follows from (4.2.5) and the symmetry of B for all




[N

C€(0,1), t¢ (O, T] and fc’gythat

J .
.2. LA = —A, YEA du’
(4.2.8) [ 4 57H 2 dg /7[3/(A~ A, VB ust7¥d$+/\‘3F’2$ dq

= _ a1 -
-[/ (fz £ 7 (A Ai)B;)“/lrdudqi- s} ?27 dg -

It holds the following continuity property for AJ .

Lemma 4.2.9

There exists a constant K3 ¢(0,2) such that for each

t € (0,T] and ¢ (0,1) we have

, 2
(4.2.10) // (A -A ) dud €K .
2 " p qQ 3

If we set in (4.2.8) 2 =A3 s then we obtain with (4.2.3),

(3.2.2), (4.2.7), (3.2.4) and the boundedness of W; and w

t

2, o)
L2.11) - - = - = £y ',
4 1 f[m’ A 3 B')“)zdudq /A? (G 4E ))ng K

Because of (4.2.6), (3.1.4), (3.2.4), (3.1.8) and (3.1.9)

we can conclude

2 . b -l 2 s —1

(4.2.12) f[ (Ai-A“) p dudgskK’ (K| 2¢ K'') €K, . (]

®
Using this result we obtain also ar asymptotic continuity 7
property for H
Lemma 4.2.13 o
For all te (0,T] we have

®




Frogt

By the uz2 of (7.2.4), (4.2.2), (7.1.8), Leama (4.2.9) and
(4.1.39) it follows for all te (O,T] that
- by 2
(4.2.15) lim //(H -H_ ) |u-q I p dudg
o -0 ¥

=11m/]"’|H HHu q[ p dudg

0(.—10
. 2
= 11m/"‘((—‘« I ., |+|\,]A -A_ [) |u-g | p dudq
w' g “
oL =30 :

=°(1 1::1(){//?’ la-u |? pdudq+/’/‘}::” ! Ai—Aul ] u~q|2 pdudq

it ~ b A 2 4
= O+lim K (/(/I A, -A,l (u-q) p du) dq/dq)"
AL =30 ;
'IH 7_ l+ f
= lim K (/}/)A VL du)(/(u—q) p duwrdg)
AL =30 7
= 0., 0O

4.3. Proof of Theorem 3.2.6
We obtain from (4.2.8) with (4. 2. 1) Ffor all L€(0,1),

~2
t€0,T1, and fe( by symmetry arguments

)
(4,3.1) /£ (——H -E YA d
/i o ¥ 1q Vi a
=ff =0T { A-Hn, T,
4 _‘1
—(1-H H Tt 2 dud
s Ty b oe 23 : q
PR _ _ (7iTE -
jT(f £ { (H, r%>+w1 H YH, (T 1)
= (1-H O H (T —1)} P A, A duda

'
.

1@




:J; (f'f f‘— ): 'Hf* —.{I t"“‘);."h\: - - 17&3’,)» -1)
+ 1M OIH (L -enp-—(2 -0 p A 2,313
-~ - - - _! ‘“4 ~ L
: - _ Sy _F RV
“(f' f){ H1+~_:_‘ £, 0 (1-H, w
- Nj
+(1--H YH_ *RJ"p A ,Zidudq

0 - i B ~F -
‘Jf”a £ Mo+ SF !1)L H, C1oH )4, (R )
+ (H_‘—H:()‘] +E(}p/2u/2.¢dudq
. " P 2
=ﬂ £, -4, ){ Hyt I(ff@g)[ Hy (1-Hy )+ I’(Hu~H¥)]
-45}Q$(21+(J~—21))p dudgq

with
) i o < T 2 < ’Z
(4.3.2) lR]—K‘*}D“- pg} K Ju-al .

Now, we expand by the usze of the Taylor formula the given PY
functions f, @ and 2 4, apply Lemma 4.2.13 and use the
property (4.1.5) that higher moments than the second
moment of p vanish asymptotically. Then it follows from Y
the above result with assumption (3.2.1) and the other

~2
moment properties of p for all te€[0, T ] and f€e C that

¢t

. °

(4.3.3) I=]Fi (H‘(t,m—mo,qnflidq—f/fifu-—ﬁ(s,qnvﬂ/q)‘
(%]
-His,w, ()], dagds
i ¢
= lim ([ £ (H . (t,q) -H, (0,900, dg~ | S £ F, A dgds)
OL—>OI$°‘ ot 2,(!?71 °




-2 ))
2 T :J.Eff {i(ui—qj)(uj—qj
I,J-‘l ¥1 'zj

{ -1 d 4) Py
{H +« 3¢5 Q u;-aH (1K T2

d 9
S - (u-—q~))p dudqds.

We note that for ¢ g;zwe have for all ge¢ JQ° the boundary

condition

Mow, by the use of the moment properties of p :(4.1.2)~
(4.1.5) and assumption (3.2.1) it follows from (4.3.3) for

~1
all te [ 0,T] and #€ C° the assertion
¢
1 'Y — — 1
(4.3.4) I= [/bl ~(grad f ) -(grad YH (1-H ) A
(,//{ 9 g ) atarady WH, AR

+( d £ )- H
gra a ;

+ —(dw grad fg H

(gradlg)

4% dqd
g Ayl dads

~ l

¢

[/"H div(A, grad € )

o b i
H

—217 (1-H rgrad fi-grad}g]dqu. a

4.4. Proof of Theorea 3.3.6
~2
From Theorem 3.2.6 we obtain for all t ¢ (0,T] and f ¢ C °

the equation

}
9




-2 (1-H,) (grad fi ) - (grad}g) ] da

f

10, T T
it Yy e

L 9 2
~ 1L -H Y {(—F_ ) (— ) d .ed .
41, 2y 1Dy, f% ] da, 4

1

and it follows by partial integration

lo/ 11 i (7

0 i=1 1 ¢35

— 2 =

+H (1 Hq)% @1)“ ...day

d L4 1.1, 1, . ;5 _
’ 1Y L _ l 0

+5—_—-/ /// If_-/l\; !;T.f-:.‘l H T_V]

1=lo oo g 1 . Y v, YodglY
CIQ - 0/? ~‘v:’l 'l" 0(70(4

where we used the abbreviations

v =(q1,...,q1‘_1 W15 Iy ,...,qd)
and ‘

¥{=(q1,...,q1_4 ,O,qt-m ve--Qy ).

- ~ 1
Because of (3.2.5) we can write for all t ¢ (0,T] and f ¢ C

1 — — —
(4.4.2) V= f—é /11 (grad £ )- (grad H +Hy (1--H7)gradbg)dq.

Again by partial integration we get from (4.4.2) tagether

with (4.4.1) for all t€ (0,7] and f€C ' the result




(4.4.2) V= f (—H - A-F & (@ -8, w (@S dq
¢ - T ) . N ) ) :
= ;_: — dlv'.;:i\'grad H‘c +H, (1-H, ) grad ;7 ))dq
" J & X (£~ A +A, (1-A ) ——Frd
+ - + - — ¢ q.
:C q 7 "’z 3 ? '} JVJ ?

Because the above esquation holds for all feg'and we aszsum2ad
that H is from 941 it follows for H with (3.1.4) and

(3.3.2) the partial differential equation

D= — — .
(4.4, LH - [UU-A)w, (q)—~
4) (‘%H‘3 [ ¢ Hi w, Q) &x!t(q)J ):Li
_ b . 1 e —
= 2 div¢ ;lg(grad H7 +H1(1-H?)grad}: ))

for all qe @ and t G(O,T] with the boundary condition

for all quQ' and tEfO,T].
Now, we can conclude from (4.4.4) and (4.4.5) that H is
the unique solution of the equations (3.3.3)-(3.3.5) which

means for all t ¢ (O,Tf]and qé'a that
(84.4.6) H(t,q) =R(t,q). w}
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